Применение полимерных материалов для гидроизоляционных работ

В последнее время в связи с развитием химической промышленности в строительстве все в больших масштабах начали применяться искусственные материалы, получаемые с использованием полимеров. Полимеры представляют собой высокомолекулярные соединения. Каждая молекула этих соединений содержит десятки и сотни тысяч атомов. Так, молекула целлюлозы высокомолекулярного вещества, из которого построены ткани всех растений, — содержит до 300 тыс. атомов.
Кроме полимера, в состав полимерных материалов могут входить: наполнитель, стабилизатор, пластификатор, краситель и некоторые другие вещества.

Наполнитель предназначается для придания материалу повышеннои механической прочности и снижения стоимости. Некоторые из наполнителей, такие, как асбест, целлюлоза, стеклянное волокно, резко повышают сопротивление материала растяжению и изгибу.

В качестве наполнителей применяют так­же древесную муку и опилки, хлопчатобумажную ткань и бумагу и т. п.
Стабилизаторы служат для уменьшения старения полимерных материалов.
Пластификатор повышает пластические свойства — эластичность и гибкость полимерного материала, однако с одновременным снижением механической прочности и теплостойкости.

фото трубы

Удельный вес пластмасс колеблется в пределах от 0,92 (полиэтилен) до 2,2 г/см3 (фторопласт).
Механическая прочность пластмасс различна. Пластмассы могут иметь вид жестких материалов, напоминающих керамику, до гибких резиноподобных материалов.
Эластичность полимерных материалов характеризует а некоторой мере их удобоукладываемость. Эластичность зависит в определенной степени от температуры. Так, пленки полиэтилена и полиамидов с понижением температуры теряют гибкость и становятся хрупкими.

Полимерные материалы, как правило, обладают почти полной водонепроницаемостью и также повышенной, а некоторые материалы, как, например, фторопласт, даже исключительной химической стойкостью к действию кислот и щелочей. Они не подвержены коррозии. Однако полимерные материалы характеризуются ползучестью, а некоторые из них — старением, т. е. ухудшением ряда свойств под действием тепла, света, органических растворителей и т. п.
Пластичность высокомолекулярного вещества определяется характером построения его молекулы.

В зависимости от этого пластмассы делятся на два вида — термопласты и реактопласты (термореактивные пластмассы).
Качественное различие между ними состоит в том, что первые могут размягчаться при нагревании, а вторые размягчаются лишь один раз при изготовлении, после чего по существу теряют свои пластические свойства.

Термопласты допускают многократную переработку в новые изделия после очень длительной эксплуатации.
Указанное различие объясняется тем, что молекулы термопластов имеют линейное строение, представляя собой цепочку из групп атомов, а молекулы реактопластов соединены, т. е. как бы сшиты между собой.

Исходные продукты для изготовления полимерных материалов получают из таких широко доступных видов сырья, как уголо, известь, воздух, нефть, природные газы и т. п.

Пластмассы изготавливают из исходных материалов двумя способами — полимеризацией и поликонденсацией.
При полимеризации исходным материалом служат мономерэтилен, хлорвинил, стирол и т. п., молекулы которого соединяются между собой, образуя длинные цепочки нового вещества — полимера, резко отличающегося по своим свойствам от мономера.

Для ускорения реакции используют нагревание и катализаторы (ускорители процесса).
Полимеры, получаемые посредством полимеризации, являются чаще всего термопластами.
В случае соединения молекул разнородных веществ процесс называется уже совместной полимеризацией или сополимеризацией.

При поликонденсации смолы получается в результате реакции не менее двух различных химических веществ. При этом выделяется вода или другие побочные продукты. Так, при совместном нагревании фенола и формальдегида образуются новолачная фенолформальдегидная смола и вода.

Новолачная смола в отличие от всех остальных фенолформальдегидных смол является термопластичной.
В настоящее время осуществляются самые различные методы синтеза полимеров, которые позволяют получать высокомолекулярные материалы с почти любыми заданными свойствами. Для гидроизоляционных целей применяют различные полимерные материалы.